3.178 \(\int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=125 \[ \frac {2 a^2 \tan ^5(c+d x)}{5 d (a \sec (c+d x)+a)^{5/2}}+\frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 a \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac {2 \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[Out]

2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*tan(
d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)+2/5*a^2*tan(d*x+c)^5/d/(a+a*sec(d*x+c))^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3887, 459, 302, 203} \[ \frac {2 a^2 \tan ^5(c+d x)}{5 d (a \sec (c+d x)+a)^{5/2}}+\frac {2 a \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}+\frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(Sqrt[a]*d) - (2*Tan[c + d*x])/(d*Sqrt[a + a*Sec[c
 + d*x]]) + (2*a*Tan[c + d*x]^3)/(3*d*(a + a*Sec[c + d*x])^(3/2)) + (2*a^2*Tan[c + d*x]^5)/(5*d*(a + a*Sec[c +
 d*x])^(5/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps

\begin {align*} \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx &=-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {x^4 \left (2+a x^2\right )}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {x^4}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \left (-\frac {1}{a^2}+\frac {x^2}{a}+\frac {1}{a^2 \left (1+a x^2\right )}\right ) \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.11, size = 238, normalized size = 1.90 \[ \frac {16 \sqrt {2} \tan ^5(c+d x) \left (\frac {1}{\sec (c+d x)+1}\right )^{9/2} \left (-\frac {4}{9} \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \, _2F_1\left (2,\frac {9}{2};\frac {11}{2};-2 \sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )-\frac {\cos (c+d x) (5 \cos (c+d x)+9) \csc ^6\left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left ((22 \cos (c+d x)-23 \cos (2 (c+d x))-29) \sqrt {1-\sec (c+d x)}+30 \cos ^2(c+d x) \tanh ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )\right )}{480 \sqrt {1-\sec (c+d x)}}\right )}{5 d \left (1-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{7/2} \sqrt {a (\sec (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(16*Sqrt[2]*((1 + Sec[c + d*x])^(-1))^(9/2)*(-1/480*(Cos[c + d*x]*(9 + 5*Cos[c + d*x])*Csc[(c + d*x)/2]^6*Sec[
(c + d*x)/2]^2*(30*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Cos[c + d*x]^2 + (-29 + 22*Cos[c + d*x] - 23*Cos[2*(c + d*x
)])*Sqrt[1 - Sec[c + d*x]]))/Sqrt[1 - Sec[c + d*x]] - (4*Hypergeometric2F1[2, 9/2, 11/2, -2*Sec[c + d*x]*Sin[(
c + d*x)/2]^2]*Sec[c + d*x]*Tan[(c + d*x)/2]^2)/9)*Tan[c + d*x]^5)/(5*d*Sqrt[a*(1 + Sec[c + d*x])]*(1 - Tan[(c
 + d*x)/2]^2)^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 311, normalized size = 2.49 \[ \left [-\frac {15 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (17 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) - 3\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, -\frac {2 \, {\left (15 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + {\left (17 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) - 3\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{15 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/15*(15*(cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(17*cos(d*x + c)^
2 + cos(d*x + c) - 3)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x
+ c)^2), -2/15*(15*(cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co
s(d*x + c)/(sqrt(a)*sin(d*x + c))) + (17*cos(d*x + c)^2 + cos(d*x + c) - 3)*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)]

________________________________________________________________________________________

giac [B]  time = 6.15, size = 283, normalized size = 2.26 \[ \frac {\sqrt {2} {\left (\frac {15 \, \sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} + \frac {4 \, {\left ({\left (\frac {13 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {40 \, a^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {15 \, a^{2}}{\mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )}}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/30*sqrt(2)*(15*sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
+ 4*sqrt(2)*abs(a) - 6*a))/(abs(a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 4*((13*a^2*tan(1/2*d*x + 1/2*c)^2/sgn(ta
n(1/2*d*x + 1/2*c)^2 - 1) - 40*a^2/sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2 + 15*a^2/sgn(tan(1/
2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
 a)))/d

________________________________________________________________________________________

maple [B]  time = 1.27, size = 231, normalized size = 1.85 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (15 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {2}+15 \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sin \left (d x +c \right )+68 \left (\cos ^{3}\left (d x +c \right )\right )-64 \left (\cos ^{2}\left (d x +c \right )\right )-16 \cos \left (d x +c \right )+12\right )}{30 d \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/30/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(15*sin(d*x+c)*cos(d*x+c)^2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*ar
ctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)+15*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(3/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)*2^(
1/2)*sin(d*x+c)+68*cos(d*x+c)^3-64*cos(d*x+c)^2-16*cos(d*x+c)+12)/sin(d*x+c)/cos(d*x+c)^2/a

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{4}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(tan(c + d*x)**4/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________